三维形体投影面积
883. 三维形体投影面积
在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。
现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影。
投影就像影子,将三维形体映射到一个二维平面上。
在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回所有三个投影的总面积。
示例 1:
输入:[[2]]
输出:5
示例 2:
输入:[[1,2],[3,4]]
输出:17
解释:
这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 3:
输入:[[1,0],[0,2]]
输出:8
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:14
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:21
public int projectionArea(int[][] grid) {
int sum = 0;
for(int i = 0;i<grid.length;i++){
int bestRow = 0;
int bestCol = 0;
for(int j = 0;j<grid.length;j++){
if(grid[i][j] > 0) sum ++;
bestRow = Math.max(bestRow,grid[i][j]);
bestCol = Math.max(bestCol,grid[j][i]);
}
sum += bestRow + bestCol;
}
return sum;
}
三维形体的表面积
892. 三维形体的表面积
N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。
请你返回最终形体的表面积。
示例 1:
输入:[[2]]
输出:10
示例 2:
输入:[[1,2],[3,4]]
输出:34
示例 3:
输入:[[1,0],[0,2]]
输出:16
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]]
输出:32
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]]
输出:46
public int surfaceArea(int[][] grid) {
int n = grid.length, area = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
// 先把grid[i][j]赋值给level,省掉了bound check,可以略微略微略微优化一下耗时。。。
int level = grid[i][j];
if (level > 0) {
// 一个柱体中:2个底面 + 所有的正方体都贡献了4个侧表面积
area += (level * 4) + 2;
// 减掉 i 与 i-1 相贴的两份表面积
area -= i > 0? Math.min(level, grid[i - 1][j]) * 2: 0;
// 减掉 j 与 j-1 相贴的两份表面积
area -= j > 0? Math.min(level, grid[i][j - 1]) * 2: 0;
}
}
}
return area;
}