mahout

应用场景

Mahout 是一个基于 Hadoop 的机器学习和数据挖掘的分布式计算框架,封装实现了大量数据挖掘经典算法,为 Hadoop 开发人员提供了数据建模的标准,从而大大降低了大数据应用中并行挖掘产品的开发难度。在掌握了 Mahout 之后,Hadoop 开发人员可以直接调用相关算法模型的接口,方便、快捷地创建智能应用程序,从而大幅提升商业智能软件的大数据分析能力。

操作步骤

1.引言

下面给出一个应用场景:
比如你是一个拥有众多藏书的图书馆馆长,但是图书馆里面的藏书全部都是混乱无序的。来到图书馆看书的读者如果要找一本书,则相当麻烦。如果所有的图书是按照书名首字母排序的,那么查找图书就会变得容易得多;或者你也可以按照图书的主题来分类。因此,你需要按照某种规则来把图书排成一列,当遇到与之前规则一样的图书,就可以把它们放在一起;当你遍历完所有读书时,众多的书籍已经被分成了若干类,一遍 聚类 也就完成了。如果你觉得第一遍聚类的结果还不够精细,你还可以进行第二遍聚类,直到结果令人满意为止。

2.简介

Hadoop在之前的文章里面已经申明,是大数据的分析,存储很好的平台。然而,Apache Mahout 起源于2008年,它是 Apache Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的 机器学习算法,供开发人员在 Apache 许可下更加方便快捷地创建智能应用程序。M

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 点我我会动 设计师:白松林 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值