spark周边

一、shark

Shark自己也没用过,不太熟悉,只了解它的背景,现在已经被Spark淘汰,也不去熟悉它了!

Spark 1.0版本开始,推出了Spark SQL。

其实最早使用的,都是Hadoop自己的Hive查询引擎;但是后来Spark提供了Shark;再后来Shark被淘汰,推出了Spark SQL。Shark的性能比Hive就要高出一个数量级,而Spark SQL的性能又比Shark高出一个数量级。

最早来说,Hive的诞生,主要是因为要让那些不熟悉Java,无法深入进行MapReduce编程的数据分析师,能够使用他们熟悉的关系型数据库的SQL模型,来操作HDFS上的数据。因此推出了Hive。Hive底层基于MapReduce实现SQL功能,能够让数据分析人员,以及数据开发人员,方便的使用Hive进行数据仓库的建模和建设,然后使用SQL模型针对数据仓库中的数据进行统计和分析。但是Hive有个致命的缺陷,就是它的底层基于MapReduce,而MapReduce的shuffle又是基于磁盘的,因此导致Hive的性能异常低下。进场出现复杂的SQL ETL,要运行数个小时,甚至数十个小时的情况。

后来,Spark推出了Shark,Shark与Hive实际上还是紧密关联的,Shark底层很多东西还是依赖于Hive,但是修改了内存管理、物理计划、执行三个模块,底层使用Spark的基于内存的计算模型

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 点我我会动 设计师:白松林 返回首页
实付 49.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值